Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38472409

RESUMEN

Bees are known for their ability to forage with high efficiency. One of their strategies to avoid unproductive foraging is to be at the food source at the right time of the day. Approximately one hundred years ago, researchers discovered that honeybees have a remarkable time memory, which they use for optimizing foraging. Ingeborg Beling was the first to examine this time memory experimentally. In her doctoral thesis, completed under the mentorship of Karl von Frisch in 1929, she systematically examined the capability of honeybees to remember specific times of the day at which they had been trained to appear at a feeding station. Beling was a pioneer in chronobiology, as she described the basic characteristics of the circadian clock on which the honeybee's time memory is based. Unfortunately, after a few years of extremely productive research, she ended her scientific career, probably due to family reasons or political pressure to reduce the number of women in the workforce. Here, we present a biographical sketch of Ingeborg Beling and review her research on the time memory of honeybees. Furthermore, we discuss the significance of her work, considering what is known about time memory today - nearly 100 years after she conducted her experiments.


Asunto(s)
Conducta Alimentaria , Alimentos , Animales , Abejas , Conducta Alimentaria/fisiología , Historia del Siglo XX
2.
J Cell Sci ; 135(7)2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35388894

RESUMEN

Dopey family proteins play crucial roles in diverse processes from morphogenesis to neural function and are conserved from yeast to mammals. Understanding the mechanisms behind these critical functions could have major clinical significance, as dysregulation of Dopey proteins has been linked to the cognitive defects in Down syndrome, as well as neurological diseases. Dopey proteins form a complex with the non-essential GEF-like protein Mon2 and an essential lipid flippase from the P4-ATPase family. Different combinations of Dopey, Mon2 and flippases have been linked to regulating membrane remodeling, from endosomal recycling to extracellular vesicle formation, through their interactions with lipids and other membrane trafficking regulators, such as ARL1, SNX3 and the kinesin-1 light chain KLC2. Despite these important functions and their likely clinical significance, Dopey proteins remain understudied and their roles elusive. Here, we review the major scientific discoveries relating to Dopey proteins and detail key open questions regarding their function to draw attention to these fascinating enigmas.


Asunto(s)
Proteínas de Unión al GTP Monoméricas , Proteínas de Saccharomyces cerevisiae , Adenosina Trifosfatasas/metabolismo , Animales , Endosomas/metabolismo , Mamíferos/metabolismo , Membranas/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
3.
J Comp Neurol ; 530(9): 1321-1340, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34802154

RESUMEN

The neuropeptide pigment-dispersing factor (PDF) plays a prominent role in the circadian clock of many insects including honey bees. In the honey bee brain, PDF is expressed in about 15 clock neurons per hemisphere that lie between the central brain and the optic lobes. As in other insects, the bee PDF neurons form wide arborizations in the brain, but certain differences are evident. For example, they arborize only sparsely in the accessory medulla (AME), which serves as important communication center of the circadian clock in cockroaches and flies. Furthermore, all bee PDF neurons cluster together, which makes it impossible to distinguish individual projections. Here, we investigated the developing bee PDF network and found that the first three PDF neurons arise in the third larval instar and form a dense network of varicose fibers at the base of the developing medulla that strongly resembles the AME of hemimetabolous insects. In addition, they send faint fibers toward the lateral superior protocerebrum. In last larval instar, PDF cells with larger somata appear and send fibers toward the distal medulla and the medial protocerebrum. In the dorsal part of the medulla serpentine layer, a small PDF knot evolves from which PDF fibers extend ventrally. This knot disappears during metamorphosis and the varicose arborizations in the putative AME become fainter. Instead, a new strongly stained PDF fiber hub appears in front of the lobula. Simultaneously, the number of PDF neurons increases and the PDF neuronal network in the brain gets continuously more complex.


Asunto(s)
Relojes Circadianos , Neuropéptidos , Animales , Abejas , Encéfalo/metabolismo , Ritmo Circadiano/fisiología , Insectos/metabolismo , Larva/metabolismo , Neuronas/metabolismo , Neuropéptidos/metabolismo , Lóbulo Óptico de Animales no Mamíferos/fisiología
4.
Front Physiol ; 12: 705048, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34366893

RESUMEN

Circadian clocks prepare the organism to cyclic environmental changes in light, temperature, or food availability. Here, we characterized the master clock in the brain of a strongly photoperiodic insect, the aphid Acyrthosiphon pisum, immunohistochemically with antibodies against A. pisum Period (PER), Drosophila melanogaster Cryptochrome (CRY1), and crab Pigment-Dispersing Hormone (PDH). The latter antibody detects all so far known PDHs and PDFs (Pigment-Dispersing Factors), which play a dominant role in the circadian system of many arthropods. We found that, under long days, PER and CRY are expressed in a rhythmic manner in three regions of the brain: the dorsal and lateral protocerebrum and the lamina. No staining was detected with anti-PDH, suggesting that aphids lack PDF. All the CRY1-positive cells co-expressed PER and showed daily PER/CRY1 oscillations of high amplitude, while the PER oscillations of the CRY1-negative PER neurons were of considerable lower amplitude. The CRY1 oscillations were highly synchronous in all neurons, suggesting that aphid CRY1, similarly to Drosophila CRY1, is light sensitive and its oscillations are synchronized by light-dark cycles. Nevertheless, in contrast to Drosophila CRY1, aphid CRY1 was not degraded by light, but steadily increased during the day and decreased during the night. PER was always located in the nuclei of the clock neurons, while CRY was predominantly cytoplasmic and revealed the projections of the PER/CRY1-positive neurons. We traced the PER/CRY1-positive neurons through the aphid protocerebrum discovering striking similarities with the circadian clock of D. melanogaster: The CRY1 fibers innervate the dorsal and lateral protocerebrum and putatively connect the different PER-positive neurons with each other. They also run toward the pars intercerebralis, which controls hormone release via the neurohemal organ, the corpora cardiaca. In contrast to Drosophila, the CRY1-positive fibers additionally travel directly toward the corpora cardiaca and the close-by endocrine gland, corpora allata. This suggests a direct link between the circadian clock and the photoperiodic control of hormone release that can be studied in the future.

5.
Front Behav Neurosci ; 14: 601676, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33328925

RESUMEN

The fruit fly Drosophila melanogaster is an established model organism in chronobiology, because genetic manipulation and breeding in the laboratory are easy. The circadian clock neuroanatomy in D. melanogaster is one of the best-known clock networks in insects and basic circadian behavior has been characterized in detail in this insect. Another model in chronobiology is the honey bee Apis mellifera, of which diurnal foraging behavior has been described already in the early twentieth century. A. mellifera hallmarks the research on the interplay between the clock and sociality and complex behaviors like sun compass navigation and time-place-learning. Nevertheless, there are aspects of clock structure and function, like for example the role of the clock in photoperiodism and diapause, which can be only insufficiently investigated in these two models. Unlike high-latitude flies such as Chymomyza costata or D. ezoana, cosmopolitan D. melanogaster flies do not display a photoperiodic diapause. Similarly, A. mellifera bees do not go into "real" diapause, but most solitary bee species exhibit an obligatory diapause. Furthermore, sociality evolved in different Hymenoptera independently, wherefore it might be misleading to study the social clock only in one social insect. Consequently, additional research on non-model insects is required to understand the circadian clock in Diptera and Hymenoptera. In this review, we introduce the two chronobiology model insects D. melanogaster and A. mellifera, compare them with other insects and show their advantages and limitations as general models for insect circadian clocks.

6.
Front Cell Dev Biol ; 8: 581323, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33282863

RESUMEN

Social life style can influence many aspects of an animal's daily life, but it has not yet been clarified, whether development of the circadian clock in social and solitary living bees differs. In a comparative study, with the social honey bee, Apis mellifera, and the solitary mason bee, Osmia bicornis, we now found indications for a differentially timed clock development in social and solitary bees. Newly emerged solitary bees showed rhythmic locomotion right away and the number of neurons in the brain that produce the clock component pigment-dispersing factor (PDF) did not change during aging of the adult solitary bee. Honey bees on the other hand, showed no circadian locomotion directly after emergence and the neuronal clock network continued to grow after emergence. Social bees appear to emerge at an early developmental stage at which the circadian clock is still immature, but bees are already able to fulfill in-hive tasks.

7.
Front Cell Dev Biol ; 8: 648, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32793595

RESUMEN

The lipids phosphatidylserine (PtdSer) and phosphatidylethanolamine (PtdEth) are normally asymmetrically localized to the cytosolic face of membrane bilayers, but can both be externalized during diverse biological processes, including cell division, cell fusion, and cell death. Externalized lipids in the plasma membrane are recognized by lipid-binding proteins to regulate the clearance of cell corpses and other cell debris. However, it is unclear whether PtdSer and PtdEth contribute in similar or distinct ways to these processes. We discovered that disruption of the lipid flippases that maintain PtdSer or PtdEth asymmetry in the plasma membrane have opposite effects on phagocytosis in Caenorhabditis elegans embryos. Constitutive PtdSer externalization caused by disruption of the major PtdSer flippase TAT-1 led to increased phagocytosis of cell debris, sometimes leading to two cells engulfing the same debris. In contrast, PtdEth externalization caused by depletion of the major PtdEth flippase TAT-5 or its activator PAD-1 disrupted phagocytosis. These data suggest that PtdSer and PtdEth externalization have opposite effects on phagocytosis. Furthermore, externalizing PtdEth is associated with increased extracellular vesicle release, and we present evidence that the extent of extracellular vesicle accumulation correlates with the extent of phagocytic defects. Thus, a general loss of lipid asymmetry can have opposing impacts through different lipid subtypes simultaneously exerting disparate effects.

8.
Front Physiol ; 11: 229, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32273848

RESUMEN

A major challenge for all organisms that live in temperate and subpolar regions is to adapt physiology and activity to different photoperiods. A long-standing model assumes that there are morning (M) and evening (E) oscillators with different photoreceptive properties that couple to dawn and dusk, respectively, and by this way adjust activity to the different photoperiods. In the fruit fly Drosophila melanogaster, M and E oscillators have been localized to specific circadian clock neurons in the brain. Here, we investigate under different photoperiods the activity pattern of flies expressing the clock protein PERIOD (PER) only in subsets of M and E oscillators. We found that all fly lines that expressed PER only in subsets of the clock neurons had difficulties to track the morning and evening in a wild-type manner. The lack of the E oscillators advanced M activity under short days, whereas the lack of the M oscillators delayed E activity under the same conditions. In addition, we found that flies expressing PER only in subsets of clock neurons showed higher activity levels at certain times of day or night, suggesting that M and E clock neurons might inhibit activity at specific moments throughout the 24 h. Altogether, we show that the proper interaction between all clock cells is important for adapting the flies' activity to different photoperiods and discuss our findings in the light of the current literature.

9.
Sci Rep ; 9(1): 17748, 2019 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-31780704

RESUMEN

Life on earth adapted to the daily reoccurring changes in environment by evolving an endogenous circadian clock. Although the circadian clock has a crucial impact on survival and behavior of solitary bees, many aspects of solitary bee clock mechanisms remain unknown. Our study is the first to show that the circadian clock governs emergence in Osmia bicornis, a bee species which overwinters as adult inside its cocoon. Therefore, its eclosion from the pupal case is separated by an interjacent diapause from its emergence in spring. We show that this bee species synchronizes its emergence to the morning. The daily rhythms of emergence are triggered by temperature cycles but not by light cycles. In contrast to this, the bee's daily rhythms in locomotion are synchronized by light cycles. Thus, we show that the circadian clock of O. bicornis is set by either temperature or light, depending on what activity is timed. Light is a valuable cue for setting the circadian clock when bees have left the nest. However, for pre-emerged bees, temperature is the most important cue, which may represent an evolutionary adaptation of the circadian system to the cavity-nesting life style of O. bicornis.


Asunto(s)
Abejas/fisiología , Animales , Relojes Circadianos , Ritmo Circadiano , Femenino , Locomoción , Masculino , Fotoperiodo
10.
Nat Commun ; 10(1): 3490, 2019 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-31375709

RESUMEN

Visualization of specific organelles in tissues over background fluorescence can be challenging, especially when reporters localize to multiple structures. Instead of trying to identify proteins enriched in specific membrane-wrapped structures, we use a selective degradation approach to remove reporters from the cytoplasm or nucleus of C. elegans embryos and mammalian cells. We demonstrate specific labelling of organelles using degron-tagged reporters, including extracellular vesicles, as well as individual neighbouring membranes. These degron-tagged reporters facilitate long-term tracking of released cell debris and cell corpses, even during uptake and phagolysosomal degradation. We further show that degron protection assays can probe the topology of the nuclear envelope and plasma membrane during cell division, giving insight into protein and organelle dynamics. As endogenous and heterologous degrons are used in bacteria, yeast, plants, and animals, degron approaches can enable the specific labelling and tracking of proteins, vesicles, organelles, cell fragments, and cells in many model systems.


Asunto(s)
Membrana Celular/metabolismo , Vesículas Extracelulares/metabolismo , Microscopía Intravital/métodos , Coloración y Etiquetado/métodos , Animales , Caenorhabditis elegans , Embrión no Mamífero , Fluorescencia , Genes Reporteros/genética , Células HeLa , Humanos , Proteínas Luminiscentes/química , Proteínas Luminiscentes/genética , Proteolisis
11.
Open Biol ; 8(1)2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29321240

RESUMEN

Pigment-Dispersing Factor (PDF) is an important neuropeptide in the brain circadian network of Drosophila and other insects, but its role in bees in which the circadian clock influences complex behaviour is not well understood. We combined high-resolution neuroanatomical characterizations, quantification of PDF levels over the day and brain injections of synthetic PDF peptide to study the role of PDF in the honey bee Apis mellifera We show that PDF co-localizes with the clock protein Period (PER) in a cluster of laterally located neurons and that the widespread arborizations of these PER/PDF neurons are in close vicinity to other PER-positive cells (neurons and glia). PDF-immunostaining intensity oscillates in a diurnal and circadian manner with possible influences for age or worker task on synchrony of oscillations in different brain areas. Finally, PDF injection into the area between optic lobes and the central brain at the end of the subjective day produced a consistent trend of phase-delayed circadian rhythms in locomotor activity. Altogether, these results are consistent with the hypothesis that PDF is a neuromodulator that conveys circadian information from pacemaker cells to brain centres involved in diverse functions including locomotion, time memory and sun-compass orientation.


Asunto(s)
Encéfalo/metabolismo , Relojes Circadianos , Proteínas de Insectos/metabolismo , Neuronas/metabolismo , Neuropéptidos/metabolismo , Animales , Abejas , Encéfalo/citología , Encéfalo/fisiología , Locomoción , Neuronas/fisiología , Proteínas Circadianas Period/metabolismo
12.
Proc Natl Acad Sci U S A ; 115(6): E1127-E1136, 2018 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-29367422

RESUMEN

Cells release extracellular vesicles (EVs) that mediate intercellular communication and repair damaged membranes. Despite the pleiotropic functions of EVs in vitro, their in vivo function is debated, largely because it is unclear how to induce or inhibit their formation. In particular, the mechanisms of EV release by plasma membrane budding or ectocytosis are poorly understood. We previously showed that TAT-5 phospholipid flippase activity maintains the asymmetric localization of the lipid phosphatidylethanolamine (PE) in the plasma membrane and inhibits EV budding by ectocytosis in Caenorhabditis elegans However, no proteins that inhibit ectocytosis upstream of TAT-5 were known. Here, we identify TAT-5 regulators associated with retrograde endosomal recycling: PI3Kinase VPS-34, Beclin1 homolog BEC-1, DnaJ protein RME-8, and the uncharacterized Dopey homolog PAD-1. PI3Kinase, RME-8, and semiredundant sorting nexins are required for the plasma membrane localization of TAT-5, which is important to maintain PE asymmetry and inhibit EV release. PAD-1 does not directly regulate TAT-5 localization, but is required for the lipid flipping activity of TAT-5. PAD-1 also has roles in endosomal trafficking with the GEF-like protein MON-2, which regulates PE asymmetry and EV release redundantly with sorting nexins independent of the core retromer. Thus, in addition to uncovering redundant intracellular trafficking pathways, our study identifies additional proteins that regulate EV release. This work pinpoints TAT-5 and PE as key regulators of plasma membrane budding, further supporting the model that PE externalization drives ectocytosis.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Animales Modificados Genéticamente/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Membrana Celular/metabolismo , Embrión no Mamífero/metabolismo , Vesículas Extracelulares/metabolismo , Fosfatidiletanolaminas/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfato/metabolismo , Animales , Animales Modificados Genéticamente/genética , Animales Modificados Genéticamente/crecimiento & desarrollo , Caenorhabditis elegans/embriología , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Embrión no Mamífero/citología , Endocitosis/fisiología
13.
Sci Rep ; 7(1): 14906, 2017 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-29097765

RESUMEN

Timing seasonal events, like reproduction or diapause, is crucial for the survival of many species. Global change causes phenologies worldwide to shift, which requires a mechanistic explanation of seasonal time measurement. Day length (photoperiod) is a reliable indicator of winter arrival, but it remains unclear how exactly species measure day length. A reference for time of day could be provided by a circadian clock, by an hourglass clock, or, as some newer models suggest, by a damped circadian clock. However, damping of clock outputs has so far been rarely observed. To study putative clock outputs of Acyrthosiphon pisum aphids, we raised individual nymphs on coloured artificial diet, and measured rhythms in metabolic activity in light-dark illumination cycles of 16:08 hours (LD) and constant conditions (DD). In addition, we kept individuals in a novel monitoring setup and measured locomotor activity. We found that A. pisum is day-active in LD, potentially with a bimodal distribution. In constant darkness rhythmicity of locomotor behaviour persisted in some individuals, but patterns were mostly complex with several predominant periods. Metabolic activity, on the other hand, damped quickly. A damped circadian clock, potentially driven by multiple oscillator populations, is the most likely explanation of our results.


Asunto(s)
Áfidos/fisiología , Relojes Circadianos , Animales , Áfidos/metabolismo , Ritmo Circadiano , Oscuridad , Locomoción , Estaciones del Año
14.
Cell Adh Migr ; 11(2): 135-150, 2017 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-27689411

RESUMEN

Cells from bacteria to man release extracellular vesicles (EVs) that contain signaling molecules like proteins, lipids, and nucleic acids. The content, formation, and signaling roles of these conserved vesicles are diverse, but the physiological relevance of EV signaling in vivo is still debated. Studies in classical genetic model organisms like C. elegans and Drosophila have begun to reveal the developmental and behavioral roles for EVs. In this review, we discuss the emerging evidence for the in vivo signaling roles of EVs. Significant effort has also been made to understand the mechanisms behind the formation and release of EVs, specifically of exosomes derived from exocytosis of multivesicular bodies and of microvesicles derived from plasma membrane budding called ectocytosis. In this review, we detail the impact of flies and worms on understanding the proteins and lipids involved in EV biogenesis and highlight the open questions in the field.


Asunto(s)
Caenorhabditis elegans/metabolismo , Drosophila melanogaster/metabolismo , Vesículas Extracelulares/metabolismo , Animales , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Lípidos/química , Transducción de Señal
15.
Artículo en Inglés | MEDLINE | ID: mdl-27380473

RESUMEN

Chronobiological studies of individual activity rhythms in social insects can be constrained by the artificial isolation of individuals from their social context. We present a new experimental set-up that simultaneously measures the temperature rhythm in a queen-less but brood raising mini colony and the walking activity rhythms of singly kept honey bees that have indirect social contact with it. Our approach enables monitoring of individual bees in the social context of a mini colony under controlled laboratory conditions. In a pilot experiment, we show that social contact with the mini colony improves the survival of monitored young individuals and affects locomotor activity patterns of young and old bees. When exposed to conflicting Zeitgebers consisting of a light-dark (LD) cycle that is phase-delayed with respect to the mini colony rhythm, rhythms of young and old bees are socially synchronized with the mini colony rhythm, whereas isolated bees synchronize to the LD cycle. We conclude that the social environment is a stronger Zeitgeber than the LD cycle and that our new experimental set-up is well suited for studying the mechanisms of social entrainment in honey bees.


Asunto(s)
Abejas , Ritmo Circadiano , Conducta Social , Medio Social , Caminata , Acelerometría/instrumentación , Animales , Abejas/fisiología , Diseño de Equipo , Femenino , Vivienda para Animales , Fotoperiodo , Proyectos Piloto , Aislamiento Social , Análisis de Supervivencia , Temperatura
16.
J Insect Sci ; 162016.
Artículo en Inglés | MEDLINE | ID: mdl-27012868

RESUMEN

Seasonal timing is assumed to involve the circadian clock, an endogenous mechanism to track time and measure day length. Some debate persists, however, and aphids were among the first organisms for which circadian clock involvement was questioned. Inferences about links to phenology are problematic, as the clock itself is little investigated in aphids. For instance, it is unknown whether aphids possess diurnal rhythms at all. Possibly, the close interaction with host plants prevents independent measurements of rhythmicity. We reared the pea aphid Acyrthosiphon pisum(Harris) on an artificial diet, and recorded survival, moulting, and honeydew excretion. Despite their plant-dependent life style, aphids were independently rhythmic under light-dark conditions. This first demonstration of diurnal aphid rhythms shows that aphids do not simply track the host plant's rhythmicity.


Asunto(s)
Áfidos/fisiología , Ritmo Circadiano/fisiología , Alimentación Animal , Animales , Relojes Circadianos/fisiología , Dieta , Reproducción/fisiología , Reproducción Asexuada/fisiología
17.
Dev Biol ; 402(2): 264-75, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-25864412

RESUMEN

The precise regulation of cell-cell communication by numerous signal-transduction pathways is fundamental for many different processes during embryonic development. One important signalling pathway is the evolutionary conserved fibroblast-growth-factor (FGF)-pathway that controls processes like cell migration, axis specification and mesoderm formation in vertebrate and invertebrate animals. In the model insect Drosophila, the FGF ligand / receptor combinations of FGF8 (Pyramus and Thisbe) / Heartless (Htl) and Branchless (Bnl) / Breathless (Btl) are required for the migration of mesodermal cells and for the formation of the tracheal network respectively with both the receptors functioning independently of each other. However, only a single fgf-receptor gene (Tc-fgfr) has been identified in the genome of the beetle Tribolium. We therefore asked whether both the ligands Fgf8 and Bnl could transduce their signal through a common FGF-receptor in Tribolium. Indeed, we found that the function of the single Tc-fgfr gene is essential for mesoderm differentiation as well as for the formation of the tracheal network during early development. Ligand specific RNAi for Tc-fgf8 and Tc-bnl resulted in two distinct non-overlapping phenotypes of impaired mesoderm differentiation and abnormal formation of the tracheal network in Tc-fgf8- and Tc-bnl(RNAi) embryos respectively. We further show that the single Tc-fgfr gene encodes at least two different receptor isoforms that are generated through alternative splicing. We in addition demonstrate through exon-specific RNAi their distinct tissue-specific functions. Finally, we discuss the structure of the fgf-receptor gene from an evolutionary perspective.


Asunto(s)
Factor 8 de Crecimiento de Fibroblastos/metabolismo , Proteínas de Insectos/metabolismo , Isoformas de Proteínas/fisiología , Receptores de Factores de Crecimiento de Fibroblastos/genética , Sialoglicoproteínas/genética , Transducción de Señal/fisiología , Tribolium/genética , Animales , Secuencia de Bases , Cartilla de ADN/genética , Embrión no Mamífero/metabolismo , Embrión no Mamífero/ultraestructura , Evolución Molecular , Proteínas de Insectos/genética , Larva/metabolismo , Larva/ultraestructura , Datos de Secuencia Molecular , Isoformas de Proteínas/genética , Interferencia de ARN , Análisis de Secuencia de ADN , Transducción de Señal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...